A compliant ankle-actuated compass walker with triggering timing control

arXiv:2602.07158v1 Announce Type: new
Abstract: Passive dynamic walkers are widely adopted as a mathematical model to represent biped walking. The stable locomotion of these models is limited to tilted surfaces, requiring gravitational energy. Various techniques, such as actuation through the ankle and hip joints, have been proposed to extend the applicability of these models to level ground and rough terrain with improved locomotion efficiency. However, most of these techniques rely on impulsive energy injection schemes and torsional springs, which are quite challenging to implement in a physical platform. Here, a new model is proposed, named triggering controlled ankle actuated compass gait (TC-AACG), which allows non-instantaneous compliant ankle pushoff. The proposed technique can be implemented in physical platforms via series elastic actuators (SEAs). Our systematic examination shows that the proposed approach extends the locomotion capabilities of a biped model compared to impulsive ankle pushoff approach. We provide extensive simulation analysis investigating the locomotion speed, mechanical cost of transport, and basin of attraction of the proposed model.

Liked Liked