Inverse Mixed-Integer Programming: Learning Constraints then Objective Functions

arXiv:2510.04455v2 Announce Type: replace-cross
Abstract: Data-driven inverse optimization for mixed-integer linear programs (MILPs), which seeks to learn an objective function and constraints consistent with observed decisions, is important for building accurate mathematical models in a variety of domains, including power systems and scheduling. However, to the best of our knowledge, existing data-driven inverse optimization methods primarily focus on learning objective functions under known constraints, and learning both objective functions and constraints from data remains largely unexplored. In this paper, we propose a two-stage approach for a class of inverse optimization problems in which the objective is a linear combination of given feature functions and the constraints are parameterized by unknown functions and thresholds. Our method first learns the constraints and then, conditioned on the learned constraints, estimates the objective-function weights. On the theoretical side, we provide finite-sample guarantees for solving the proposed inverse optimization problem. To this end, we develop statistical learning tools for pseudo-metric spaces under sub-Gaussian assumptions and use them to derive a learning-theoretic framework for inverse optimization with both unknown objectives and constraints. On the experimental side, we demonstrate that our method successfully solves inverse optimization problems on scheduling instances formulated as ILPs with up to 100 decision variables.

Liked Liked