MFN Decomposition and Related Metrics for High-Resolution Range Profiles Generative Models
arXiv:2602.13296v1 Announce Type: new
Abstract: High-resolution range profile (HRRP ) data are in vogue in radar automatic target recognition (RATR). With the interest in classifying models using HRRP, filling gaps in datasets using generative models has recently received promising contributions. Evaluating generated data is a challenging topic, even for explicit data like face images. However, the evaluation methods used in the state-ofthe-art of HRRP generation rely on classification models. Such models, called ”black-box”, do not allow either explainability on generated data or multi-level evaluation. This work focuses on decomposing HRRP data into three components: the mask, the features, and the noise. Using this decomposition, we propose two metrics based on the physical interpretation of those data. We take profit from an expensive dataset to evaluate our metrics on a challenging task and demonstrate the discriminative ability of those.