Beyond Musical Descriptors: Extracting Preference-Bearing Intent in Music Queries

arXiv:2602.12301v1 Announce Type: new
Abstract: Although annotated music descriptor datasets for user queries are increasingly common, few consider the user’s intent behind these descriptors, which is essential for effectively meeting their needs. We introduce MusicRecoIntent, a manually annotated corpus of 2,291 Reddit music requests, labeling musical descriptors across seven categories with positive, negative, or referential preference-bearing roles. We then investigate how reliably large language models (LLMs) can extract these music descriptors, finding that they do capture explicit descriptors but struggle with context-dependent ones. This work can further serve as a benchmark for fine-grained modeling of user intent and for gaining insights into improving LLM-based music understanding systems.

Liked Liked