From Biased Chatbots to Biased Agents: Examining Role Assignment Effects on LLM Agent Robustness
arXiv:2602.12285v1 Announce Type: new
Abstract: Large Language Models (LLMs) are increasingly deployed as autonomous agents capable of actions with real-world impacts beyond text generation. While persona-induced biases in text generation are well documented, their effects on agent task performance remain largely unexplored, even though such effects pose more direct operational risks. In this work, we present the first systematic case study showing that demographic-based persona assignments can alter LLM agents’ behavior and degrade performance across diverse domains. Evaluating widely deployed models on agentic benchmarks spanning strategic reasoning, planning, and technical operations, we uncover substantial performance variations – up to 26.2% degradation, driven by task-irrelevant persona cues. These shifts appear across task types and model architectures, indicating that persona conditioning and simple prompt injections can distort an agent’s decision-making reliability. Our findings reveal an overlooked vulnerability in current LLM agentic systems: persona assignments can introduce implicit biases and increase behavioral volatility, raising concerns for the safe and robust deployment of LLM agents.