Security Threat Modeling for Emerging AI-Agent Protocols: A Comparative Analysis of MCP, A2A, Agora, and ANP

arXiv:2602.11327v1 Announce Type: new
Abstract: The rapid development of the AI agent communication protocols, including the Model Context Protocol (MCP), Agent2Agent (A2A), Agora, and Agent Network Protocol (ANP), is reshaping how AI agents communicate with tools, services, and each other. While these protocols support scalable multi-agent interaction and cross-organizational interoperability, their security principles remain understudied, and standardized threat modeling is limited; no protocol-centric risk assessment framework has been established yet. This paper presents a systematic security analysis of four emerging AI agent communication protocols. First, we develop a structured threat modeling analysis that examines protocol architectures, trust assumptions, interaction patterns, and lifecycle behaviors to identify protocol-specific and cross-protocol risk surfaces. Second, we introduce a qualitative risk assessment framework that identifies twelve protocol-level risks and evaluates security posture across the creation, operation, and update phases through systematic assessment of likelihood, impact, and overall protocol risk, with implications for secure deployment and future standardization. Third, we provide a measurement-driven case study on MCP that formalizes the risk of missing mandatory validation/attestation for executable components as a falsifiable security claim by quantifying wrong-provider tool execution under multi-server composition across representative resolver policies. Collectively, our results highlight key design-induced risk surfaces and provide actionable guidance for secure deployment and future standardization of agent communication ecosystems.

Liked Liked