H-WM: Robotic Task and Motion Planning Guided by Hierarchical World Model
arXiv:2602.11291v1 Announce Type: new
Abstract: World models are becoming central to robotic planning and control, as they enable prediction of future state transitions. Existing approaches often emphasize video generation or natural language prediction, which are difficult to directly ground in robot actions and suffer from compounding errors over long horizons. Traditional task and motion planning relies on symbolic logic world models, such as planning domains, that are robot-executable and robust for long-horizon reasoning. However, these methods typically operate independently of visual perception, preventing synchronized symbolic and perceptual state prediction. We propose a Hierarchical World Model (H-WM) that jointly predicts logical and visual state transitions within a unified bilevel framework. H-WM combines a high-level logical world model with a low-level visual world model, integrating the robot-executable, long-horizon robustness of symbolic reasoning with perceptual grounding from visual observations. The hierarchical outputs provide stable and consistent intermediate guidance for long-horizon tasks, mitigating error accumulation and enabling robust execution across extended task sequences. To train H-WM, we introduce a robotic dataset that aligns robot motion with symbolic states, actions, and visual observations. Experiments across vision-language-action (VLA) control policies demonstrate the effectiveness and generality of the approach.