Learning Glioblastoma Tumor Heterogeneity Using Brain Inspired Topological Neural Networks
arXiv:2602.11234v1 Announce Type: new
Abstract: Accurate prognosis for Glioblastoma (GBM) using deep learning (DL) is hindered by extreme spatial and structural heterogeneity. Moreover, inconsistent MRI acquisition protocols across institutions hinder generalizability of models. Conventional transformer and DL pipelines often fail to capture the multi-scale morphological diversity such as fragmented necrotic cores, infiltrating margins, and disjoint enhancing components leading to scanner-specific artifacts and poor cross-site prognosis. We propose TopoGBM, a learning framework designed to capture heterogeneity-preserved, scanner-robust representations from multi-parametric 3D MRI. Central to our approach is a 3D convolutional autoencoder regularized by a topological regularization that preserves the complex, non-Euclidean invariants of the tumor’s manifold within a compressed latent space. By enforcing these topological priors, TopoGBM explicitly models the high-variance structural signatures characteristic of aggressive GBM. Evaluated across heterogeneous cohorts (UPENN, UCSF, RHUH) and external validation on TCGA, TopoGBM achieves better performance (C-index 0.67 test, 0.58 validation), outperforming baselines that degrade under domain shift. Mechanistic interpretability analysis reveals that reconstruction residuals are highly localized to pathologically heterogeneous zones, with tumor-restricted and healthy tissue error significantly low (Test: 0.03, Validation: 0.09). Furthermore, occlusion-based attribution localizes approximately 50% of the prognostic signal to the tumor and the diverse peritumoral microenvironment advocating clinical reliability of the unsupervised learning method. Our findings demonstrate that incorporating topological priors enables the learning of morphology-faithful embeddings that capture tumor heterogeneity while maintaining cross-institutional robustness.