Latent Generative Solvers for Generalizable Long-Term Physics Simulation
arXiv:2602.11229v1 Announce Type: new
Abstract: We study long-horizon surrogate simulation across heterogeneous PDE systems. We introduce Latent Generative Solvers (LGS), a two-stage framework that (i) maps diverse PDE states into a shared latent physics space with a pretrained VAE, and (ii) learns probabilistic latent dynamics with a Transformer trained by flow matching. Our key mechanism is an uncertainty knob that perturbs latent inputs during training and inference, teaching the solver to correct off-manifold rollout drift and stabilizing autoregressive prediction. We further use flow forcing to update a system descriptor (context) from model-generated trajectories, aligning train/test conditioning and improving long-term stability. We pretrain on a curated corpus of $sim$2.5M trajectories at $128^2$ resolution spanning 12 PDE families. LGS matches strong deterministic neural-operator baselines on short horizons while substantially reducing rollout drift on long horizons. Learning in latent space plus efficient architectural choices yields up to textbf{70$times$} lower FLOPs than non-generative baselines, enabling scalable pretraining. We also show efficient adaptation to an out-of-distribution $256^2$ Kolmogorov flow dataset under limited finetuning budgets. Overall, LGS provides a practical route toward generalizable, uncertainty-aware neural PDE solvers that are more reliable for long-term forecasting and downstream scientific workflows.