SnareNet: Flexible Repair Layers for Neural Networks with Hard Constraints
arXiv:2602.09317v1 Announce Type: cross
Abstract: Neural networks are increasingly used as surrogate solvers and control policies, but unconstrained predictions can violate physical, operational, or safety requirements. We propose SnareNet, a feasibility-controlled architecture for learning mappings whose outputs must satisfy input-dependent nonlinear constraints. SnareNet appends a differentiable repair layer that navigates in the constraint map’s range space, steering iterates toward feasibility and producing a repaired output that satisfies constraints to a user-specified tolerance. To stabilize end-to-end training, we introduce adaptive relaxation, which designs a relaxed feasible set that snares the neural network at initialization and shrinks it into the feasible set, enabling early exploration and strict feasibility later in training. On optimization-learning and trajectory planning benchmarks, SnareNet consistently attains improved objective quality while satisfying constraints more reliably than prior work.