Measuring Inclusion in Interaction: Inclusion Analytics for Human-AI Collaborative Learning

arXiv:2602.09269v1 Announce Type: new
Abstract: Inclusion, equity, and access are widely valued in AI and education, yet are often assessed through coarse sample descriptors or post-hoc self-reports that miss how inclusion is shaped moment by moment in collaborative problem solving (CPS). In this proof-of-concept paper, we introduce inclusion analytics, a discourse-based framework for examining inclusion as a dynamic, interactional process in CPS. We conceptualize inclusion along three complementary dimensions — participation equity, affective climate, and epistemic equity — and demonstrate how these constructs can be made analytically visible using scalable, interaction-level measures. Using both simulated conversations and empirical data from human-AI teaming experiments, we illustrate how inclusion analytics can surface patterns of participation, relational dynamics, and idea uptake that remain invisible to aggregate or post-hoc evaluations. This work represents an initial step toward process-oriented approaches to measuring inclusion in human-AI collaborative learning environments.

Liked Liked