A Scoping Review of Deep Learning for Urban Visual Pollution and Proposal of a Real-Time Monitoring Framework with a Visual Pollution Index

Urban Visual Pollution (UVP) has emerged as a critical concern, yet research on automatic detection and application remains fragmented. This scoping review maps the existing deep learning-based approaches for detecting, classifying, and designing a comprehensive application framework for visual pollution management. Following the PRISMA-ScR guidelines, seven academic databases (Scopus, Web of Science, IEEE Xplore, ACM DL, ScienceDirect, SpringerNatureLink, and Wiley) were systematically searched and reviewed, and 26 articles were found. Most research focuses on specific pollutant categories and employs variations of YOLO, Faster R-CNN, and EfficientDet architectures. Although several datasets exist, they are limited to specific areas and lack standardized taxonomies. Few studies integrate detection into real-time application systems, yet they tend to be geographically skewed. We proposed a framework for monitoring visual pollution that integrates a visual pollution index to assess the severity of visual pollution for a certain area. This review highlights the need for a unified UVP management system that incorporates pollutant taxonomy, a cross-city benchmark dataset, a generalized deep learning model, and an assessment index that supports sustainable urban aesthetics and enhances the well-being of urban dwellers.

Liked Liked