VLRS-Bench: A Vision-Language Reasoning Benchmark for Remote Sensing

arXiv:2602.07045v1 Announce Type: new
Abstract: Recent advancements in Multimodal Large Language Models (MLLMs) have enabled complex reasoning. However, existing remote sensing (RS) benchmarks remain heavily biased toward perception tasks, such as object recognition and scene classification. This limitation hinders the development of MLLMs for cognitively demanding RS applications. To address this, , we propose a Vision Language ReaSoning Benchmark (VLRS-Bench), which is the first benchmark exclusively dedicated to complex RS reasoning. Structured across the three core dimensions of Cognition, Decision, and Prediction, VLRS-Bench comprises 2,000 question-answer pairs with an average length of 71 words, spanning 14 tasks and up to eight temporal phases. VLRS-Bench is constructed via a specialized pipeline that integrates RS-specific priors and expert knowledge to ensure geospatial realism and reasoning complexity. Experimental results reveal significant bottlenecks in existing state-of-the-art MLLMs, providing critical insights for advancing multimodal reasoning within the remote sensing community.

Liked Liked