Transformer-Based Reinforcement Learning for Autonomous Orbital Collision Avoidance in Partially Observable Environments
arXiv:2602.06088v1 Announce Type: new
Abstract: We introduce a Transformer-based Reinforcement Learning framework for autonomous orbital collision avoidance that explicitly models the effects of partial observability and imperfect monitoring in space operations. The framework combines a configurable encounter simulator, a distance-dependent observation model, and a sequential state estimator to represent uncertainty in relative motion. A central contribution of this work is the use of transformer-based Partially Observable Markov Decision Process (POMDP) architecture, which leverage long-range temporal attention to interpret noisy and intermittent observations more effectively than traditional architectures. This integration provides a foundation for training collision avoidance agents that can operate more reliably under imperfect monitoring environments.