Solving Stochastic Variational Inequalities without the Bounded Variance Assumption
arXiv:2602.05531v1 Announce Type: cross
Abstract: We analyze algorithms for solving stochastic variational inequalities (VI) without the bounded variance or bounded domain assumptions, where our main focus is min-max optimization with possibly unbounded constraint sets. We focus on two classes of problems: monotone VIs; and structured nonmonotone VIs that admit a solution to the weak Minty VI. The latter assumption allows us to solve structured nonconvex-nonconcave min-max problems. For both classes of VIs, to make the expected residual norm less than $varepsilon$, we show an oracle complexity of $widetilde{O}(varepsilon^{-4})$, which is the best-known for constrained VIs. In our setting, this complexity had been obtained with the bounded variance assumption in the literature, which is not even satisfied for bilinear min-max problems with an unbounded domain. We obtain this complexity for stochastic oracles whose variance can grow as fast as the squared norm of the optimization variable.