Optimizing Mission Planning for Multi-Debris Rendezvous Using Reinforcement Learning with Refueling and Adaptive Collision Avoidance

arXiv:2602.05075v1 Announce Type: new
Abstract: As the orbital environment around Earth becomes increasingly crowded with debris, active debris removal (ADR) missions face significant challenges in ensuring safe operations while minimizing the risk of in-orbit collisions. This study presents a reinforcement learning (RL) based framework to enhance adaptive collision avoidance in ADR missions, specifically for multi-debris removal using small satellites. Small satellites are increasingly adopted due to their flexibility, cost effectiveness, and maneuverability, making them well suited for dynamic missions such as ADR.
Building on existing work in multi-debris rendezvous, the framework integrates refueling strategies, efficient mission planning, and adaptive collision avoidance to optimize spacecraft rendezvous operations. The proposed approach employs a masked Proximal Policy Optimization (PPO) algorithm, enabling the RL agent to dynamically adjust maneuvers in response to real-time orbital conditions. Key considerations include fuel efficiency, avoidance of active collision zones, and optimization of dynamic orbital parameters.
The RL agent learns to determine efficient sequences for rendezvousing with multiple debris targets, optimizing fuel usage and mission time while incorporating necessary refueling stops. Simulated ADR scenarios derived from the Iridium 33 debris dataset are used for evaluation, covering diverse orbital configurations and debris distributions to demonstrate robustness and adaptability. Results show that the proposed RL framework reduces collision risk while improving mission efficiency compared to traditional heuristic approaches.
This work provides a scalable solution for planning complex multi-debris ADR missions and is applicable to other multi-target rendezvous problems in autonomous space mission planning.

Liked Liked