Mind the Performance Gap: Capability-Behavior Trade-offs in Feature Steering

arXiv:2602.04903v1 Announce Type: new
Abstract: Feature steering has emerged as a promising approach for controlling LLM behavior through direct manipulation of internal representations, offering advantages over prompt engineering. However, its practical effectiveness in real-world applications remains poorly understood, particularly regarding potential trade-offs with output quality. We show that feature steering methods substantially degrade model performance even when successfully controlling target behaviors, a critical trade-off. Specifically, we evaluate Goodfire’s Auto Steer against prompt engineering baselines across 14 steering queries (covering innocuous and safety-relevant behaviors) on 171 Massive Multitask Language Understanding (MMLU) questions using Llama-8B and Llama-70B, measuring accuracy, coherence, and behavioral control. Our findings show that Auto Steer successfully modifies target behaviors (achieving scores of 3.33 vs. 2.98 for prompting on Llama-8B and 3.57 vs. 3.10 on Llama-70B), but causes dramatic performance degradation: accuracy on the MMLU questions drops from 66% to 46% on Llama-8B and 87% to 73% on Llama-70B, with coherence falling from 4.62 to 2.24 and 4.94 to 3.89 respectively. Simple prompting achieves the best overall balance. These findings highlight limitations of current feature steering methods for practical deployment where task performance cannot be sacrificed. More broadly, our work demonstrates that mechanistic control methods face fundamental capability-behavior trade-offs that must be empirically characterized before deployment.

Liked Liked