IceBench-S2S: A Benchmark of Deep Learning for Challenging Subseasonal-to-Seasonal Daily Arctic Sea Ice Forecasting in Deep Latent Space

arXiv:2602.02567v1 Announce Type: new
Abstract: Arctic sea ice plays a critical role in regulating Earth’s climate system, significantly influencing polar ecological stability and human activities in coastal regions. Recent advances in artificial intelligence have facilitated the development of skillful pan-Arctic sea ice forecasting systems, where data-driven approaches showcase tremendous potential to outperform conventional physics-based numerical models in terms of accuracy, computational efficiency and forecasting lead times. Despite the latest progress made by deep learning (DL) forecasting models, most of their skillful forecasting lead times are confined to daily subseasonal scale and monthly averaged values for up to six months, which drastically hinders their deployment for real-world applications, e.g., maritime routine planning for Arctic transportation and scientific investigation. Extending daily forecasts from subseasonal to seasonal (S2S) scale is scientifically crucial for operational applications. To bridge the gap between the forecasting lead time of current DL models and the significant daily S2S scale, we introduce IceBench-S2S, the first comprehensive benchmark for evaluating DL approaches in mitigating the challenge of forecasting Arctic sea ice concentration in successive 180-day periods. It proposes a generalized framework that first compresses spatial features of daily sea ice data into a deep latent space. The temporally concatenated deep features are subsequently modeled by DL-based forecasting backbones to predict the sea ice variation at S2S scale. IceBench-S2S provides a unified training and evaluation pipeline for different backbones, along with practical guidance for model selection in polar environmental monitoring tasks.

Liked Liked