Learning ORDER-Aware Multimodal Representations for Composite Materials Design
arXiv:2602.02513v1 Announce Type: new
Abstract: Artificial intelligence (AI) has shown remarkable success in materials discovery and property prediction, particularly for crystalline and polymer systems where material properties and structures are dominated by discrete graph representations. Such graph-central paradigm breaks down on composite materials, which possess continuous and nonlinear design spaces that lack well-defined graph structures. General composite descriptors, e.g., fiber volume and misalignment angle, cannot fully capture the fiber distributions that fundamentally determine microstructural characteristics, necessitating the integration of heterogeneous data sources through multimodal learning. Existing alignment-oriented multimodal frameworks have proven effective on abundant crystal or polymer data under discrete, unique graph-property mapping assumptions, but fail to address the highly continuous composite design space under extreme data scarcity. In this work, we introduce ORDinal-aware imagE-tabulaR alignment (ORDER), a multimodal pretraining framework that establishes ordinality as a core principle for composite material representations. ORDER ensures that materials with similar target properties occupy nearby regions in the latent space, which effectively preserves the continuous nature of composite properties and enables meaningful interpolation between sparsely observed designs. We evaluate ORDER on a public Nanofiber-enforced composite dataset and an internally curated dataset that simulates the construction of carbon fiber T700 with diverse fiber distributions. ORDER achieves consistent improvements over state-of-the-art multimodal baselines across property prediction, cross-modal retrieval, and microstructure generation tasks.