Stabilizing Fixed-Point Iteration for Markov Chain Poisson Equations
arXiv:2602.00474v1 Announce Type: new
Abstract: Poisson equations underpin average-reward reinforcement learning, but beyond ergodicity they can be ill-posed, meaning that solutions are non-unique and standard fixed point iterations can oscillate on reducible or periodic chains. We study finite-state Markov chains with $n$ states and transition matrix $P$. We show that all non-decaying modes are captured by a real peripheral invariant subspace $mathcal{K}(P)$, and that the induced operator on the quotient space $mathbb{R}^n/mathcal{K}(P)$ is strictly contractive, yielding a unique quotient solution. Building on this viewpoint, we develop an end-to-end pipeline that learns the chain structure, estimates an anchor based gauge map, and runs projected stochastic approximation to estimate a gauge-fixed representative together with an associated peripheral residual. We prove $widetilde{O}(T^{-1/2})$ convergence up to projection estimation error, enabling stable Poisson equation learning for multichain and periodic regimes with applications to performance evaluation of average-reward reinforcement learning beyond ergodicity.