FAIRFORMER: A transformer architecture for discrete fair division

arXiv:2601.22346v1 Announce Type: new
Abstract: We propose a deep neural network-based solution to the problem of allocating indivisible goods under additive subjective valuations without monetary transfers, trading off economic efficiency with envy-based fairness. We introduce FairFormer, an amortized, permutation-equivariant two-tower transformer that encodes items and agents as unordered token sets, applies self-attention within each set, and uses item-to-agent cross-attention to produce per-item assignment distributions in a single forward pass. FairFormer is trained end-to-end to maximize expected log-Nash welfare on sampled instances, requiring no solver supervision, unrolled allocation procedures, or fairness labels. At test time, we discretize by row-wise $argmax$ and apply a lightweight post-processing routine that transfers items to eliminate violations of envy-freeness up to one item while prioritizing improvements in Nash welfare. Our approach generalizes beyond its training regime and achieves near-optimal welfare (e.g., for uniformly sampled valuations, $96$–$97%$ for Nash welfare; $95$–$96%$ for utilitarian welfare), outperforming strong baselines in solution quality and/or runtime.

Liked Liked