ZK-HybridFL: Zero-Knowledge Proof-Enhanced Hybrid Ledger for Federated Learning
arXiv:2601.22302v1 Announce Type: new
Abstract: Federated learning (FL) enables collaborative model training while preserving data privacy, yet both centralized and decentralized approaches face challenges in scalability, security, and update validation. We propose ZK-HybridFL, a secure decentralized FL framework that integrates a directed acyclic graph (DAG) ledger with dedicated sidechains and zero-knowledge proofs (ZKPs) for privacy-preserving model validation. The framework uses event-driven smart contracts and an oracle-assisted sidechain to verify local model updates without exposing sensitive data. A built-in challenge mechanism efficiently detects adversarial behavior. In experiments on image classification and language modeling tasks, ZK-HybridFL achieves faster convergence, higher accuracy, lower perplexity, and reduced latency compared to Blade-FL and ChainFL. It remains robust against substantial fractions of adversarial and idle nodes, supports sub-second on-chain verification with efficient gas usage, and prevents invalid updates and orphanage-style attacks. This makes ZK-HybridFL a scalable and secure solution for decentralized FL across diverse environments.