Mean-Field Learning for Storage Aggregation

arXiv:2601.21039v1 Announce Type: new
Abstract: Distributed energy storage devices can be pooled and coordinated by aggregators to participate in power system operations and market clearings. This requires representing a massive device population as a single, tractable surrogate that is computationally efficient, accurate, and compatible with market participation requirements. However, surrogate identification is challenging due to heterogeneity, nonconvexity, and high dimensionality of storage devices. To address these challenges, this paper develops a mean-field learning framework for storage aggregation. We interpret aggregation as the average behavior of a large storage population and show that, as the population grows, aggregate performance converges to a unique, convex mean-field limit, enabling tractable population-level modeling. This convexity further yields a price-responsive characterization of aggregate storage behavior and allows us to bound the mean-field approximation error. Leveraging these results, we construct a convex surrogate model that approximates the aggregate behavior of large storage populations and can be embedded directly into power system operations and market clearing. Surrogate parameter identification is formulated as an optimization problem using historical market price-response data, and we adopt a gradient-based algorithm for efficient learning procedure. Case studies validate the theoretical findings and demonstrate the effectiveness of the proposed framework in approximation accuracy, data efficiency, and profit outcomes.

Liked Liked