Diversifying Toxicity Search in Large Language Models Through Speciation

arXiv:2601.20981v1 Announce Type: new
Abstract: Evolutionary prompt search is a practical black-box approach for red teaming large language models (LLMs), but existing methods often collapse onto a small family of high-performing prompts, limiting coverage of distinct failure modes. We present a speciated quality-diversity (QD) extension of ToxSearch that maintains multiple high-toxicity prompt niches in parallel rather than optimizing a single best prompt. ToxSearch-S introduces unsupervised prompt speciation via a search methodology that maintains capacity-limited species with exemplar leaders, a reserve pool for outliers and emerging niches, and species-aware parent selection that trades off within-niche exploitation and cross-niche exploration. ToxSearch-S is found to reach higher peak toxicity ($approx 0.73$ vs. $approx 0.47$) and a extreme heavier tail (top-10 median $0.66$ vs. $0.45$) than the baseline, while maintaining comparable performance on moderately toxic prompts. Speciation also yields broader semantic coverage under a topic-as-species analysis (higher effective topic diversity $N_1$ and larger unique topic coverage $K$). Finally, species formed are well-separated in embedding space (mean separation ratio $approx 1.93$) and exhibit distinct toxicity distributions, indicating that speciation partitions the adversarial space into behaviorally differentiated niches rather than superficial lexical variants. This suggests our approach uncovers a wider range of attack strategies.

Liked Liked