Infusion of Blockchain to Establish Trustworthiness in AI Supported Software Evolution: A Systematic Literature Review

arXiv:2601.20918v1 Announce Type: new
Abstract: Context: Blockchain and AI are increasingly explored to enhance trustworthiness in software engineering (SE), particularly in supporting software evolution tasks. Method: We conducted a systematic literature review (SLR) using a predefined protocol with clear eligibility criteria to ensure transparency, reproducibility, and minimized bias, synthesizing research on blockchain-enabled trust in AI-driven SE tools and processes. Results: Most studies focus on integrating AI in SE, with only 31% explicitly addressing trustworthiness. Our review highlights six recent studies exploring blockchain-based approaches to reinforce reliability, transparency, and accountability in AI-assisted SE tasks. Conclusion: Blockchain enhances trust by ensuring data immutability, model transparency, and lifecycle accountability, including federated learning with blockchain consensus and private data verification. However, inconsistent definitions of trust and limited real-world testing remain major challenges. Future work must develop measurable, reproducible trust frameworks to enable reliable, secure, and compliant AI-driven SE ecosystems, including applications involving large language models.

Liked Liked