Minimax Rates for Hyperbolic Hierarchical Learning

arXiv:2601.20047v1 Announce Type: new
Abstract: We prove an exponential separation in sample complexity between Euclidean and hyperbolic representations for learning on hierarchical data under standard Lipschitz regularization. For depth-$R$ hierarchies with branching factor $m$, we first establish a geometric obstruction for Euclidean space: any bounded-radius embedding forces volumetric collapse, mapping exponentially many tree-distant points to nearby locations. This necessitates Lipschitz constants scaling as $exp(Omega(R))$ to realize even simple hierarchical targets, yielding exponential sample complexity under capacity control. We then show this obstruction vanishes in hyperbolic space: constant-distortion hyperbolic embeddings admit $O(1)$-Lipschitz realizability, enabling learning with $n = O(mR log m)$ samples. A matching $Omega(mR log m)$ lower bound via Fano’s inequality establishes that hyperbolic representations achieve the information-theoretic optimum. We also show a geometry-independent bottleneck: any rank-$k$ prediction space captures only $O(k)$ canonical hierarchical contrasts.

Liked Liked