Techno-economic optimization of a heat-pipe microreactor, part II: multi-objective optimization analysis
arXiv:2601.20079v1 Announce Type: new
Abstract: Heat-pipe microreactors (HPMRs) are compact and transportable nuclear power systems exhibiting inherent safety, well-suited for deployment in remote regions where access is limited and reliance on costly fossil fuels is prevalent. In prior work, we developed a design optimization framework that incorporates techno-economic considerations through surrogate modeling and reinforcement learning (RL)-based optimization, focusing solely on minimizing the levelized cost of electricity (LCOE) by using a bottom-up cost estimation approach. In this study, we extend that framework to a multi-objective optimization that uses the Pareto Envelope Augmented with Reinforcement Learning (PEARL) algorithm. The objectives include minimizing both the rod-integrated peaking factor ($F_{Delta h}$) and LCOE — subject to safety and operational constraints. We evaluate three cost scenarios: (1) a high-cost axial and drum reflectors, (2) a low-cost axial reflector, and (3) low-cost axial and drum reflectors. Our findings indicate that reducing the solid moderator radius, pin pitch, and drum coating angle — all while increasing the fuel height — effectively lowers $F_{Delta h}$. Across all three scenarios, four key strategies consistently emerged for optimizing LCOE: (1) minimizing the axial reflector contribution when costly, (2) reducing control drum reliance, (3) substituting expensive tri-structural isotropic (TRISO) fuel with axial reflector material priced at the level of graphite, and (4) maximizing fuel burnup. While PEARL demonstrates promise in navigating trade-offs across diverse design scenarios, discrepancies between surrogate model predictions and full-order simulations remain. Further improvements are anticipated through constraint relaxation and surrogate development, constituting an ongoing area of investigation.