Predictive Prototyping: Evaluating Design Concepts with ChatGPT

arXiv:2601.12276v1 Announce Type: new
Abstract: The design-build-test cycle is essential for innovation, but physical prototyping is often slow and expensive. Although physics-based simulation and strategic prototyping can reduce cost, meaningful evaluation is frequently constrained until an integrated prototype is built. This paper investigates whether a generative pretrained transformer (GPT) can predict information typically obtained through prototyping, including cost, performance, and perceived usability. We introduce a retrieval-augmented generation (RAG) method to emulate design feedback using OpenAI GPT-4o, grounded in prototyping data scraped from Instructables.com to increase access to relevant precedent. Two studies are reported. First, a controlled experiment compares GPT-RAG and human designers, who receive design sketches and predict cost, performance, and usability; predictions are evaluated against ground-truth results from physical prototypes. Second, we report an applied demonstration in which a physical prototype is produced from GPT-RAG recommendations and compared with a commercial baseline and a topology-optimized design. Results show that GPT-RAG provides more accurate cost and performance estimates than individual or crowd human estimates, while yielding comparable usability insights; the GPT-RAG-informed prototype also outperforms both comparison prototypes. Repeated querying with response averaging significantly improves accuracy, suggesting that LLMs can emulate crowd aggregation effects consistent with the law of large numbers.

Liked Liked