Wavelet-Aware Anomaly Detection in Multi-Channel User Logs via Deviation Modulation and Resolution-Adaptive Attention
arXiv:2601.12231v1 Announce Type: new
Abstract: Insider threat detection is a key challenge in enterprise security, relying on user activity logs that capture rich and complex behavioral patterns. These logs are often multi-channel, non-stationary, and anomalies are rare, making anomaly detection challenging. To address these issues, we propose a novel framework that integrates wavelet-aware modulation, multi-resolution wavelet decomposition, and resolution-adaptive attention for robust anomaly detection. Our approach first applies a deviation-aware modulation scheme to suppress routine behaviors while amplifying anomalous deviations. Next, discrete wavelet transform (DWT) decomposes the log signals into multi-resolution representations, capturing both long-term trends and short-term anomalies. Finally, a learnable attention mechanism dynamically reweights the most discriminative frequency bands for detection. On the CERT r4.2 benchmark, our approach consistently outperforms existing baselines in precision, recall, and F1 score across various time granularities and scenarios.