Speculative Sampling with Reinforcement Learning
arXiv:2601.12212v1 Announce Type: new
Abstract: Inference time latency has remained an open challenge for real world applications of large language models (LLMs). State-of-the-art (SOTA) speculative sampling (SpS) methods for LLMs, like EAGLE-3, use tree-based drafting to explore multiple candidate continuations in parallel. However, the hyperparameters controlling the tree structure are static, which limits flexibility and efficiency across diverse contexts and domains. We introduce Reinforcement learning for Speculative Sampling (Re-SpS), the first reinforcement learning (RL)-based framework for draft tree hyperparameter optimization. Re-SpS dynamically adjusts draft tree hyperparameters in real-time, learning context-aware policies that maximize generation speed by balancing speculative aggression with computational overhead. It leverages efficient state representations from target model hidden states and introduces multi-step action persistence for better context modeling. Evaluation results across five diverse benchmarks demonstrate consistent improvements over the SOTA method EAGLE-3, achieving up to 5.45$times$ speedup over the backbone LLM and up to 1.12$times$ speedup compared to EAGLE-3 across five diverse benchmarks, with no loss in output fidelity.