Construct, Align, and Reason: Large Ontology Models for Enterprise Knowledge Management
Enterprise-scale knowledge management faces significant challenges in integrating multi-source heterogeneous data and enabling effective semantic reasoning. Traditional knowledge graphs often struggle with implicit relationship discovery and lack sufficient semantic understanding for complex question answering. To address these limitations, we introduce a unified construct–align–reason framework, the large ontology model (LOM). We first build a dual-layer enterprise ontology from structured databases and unstructured text, subsequently fusing these sources into a comprehensive enterprise ontology. To enable instruction-aligned reasoning, we propose a unified three-stage training pipeline: ontology instruction fine-tuning to improve structural understanding; text-ontology grounding to strengthen node semantic encoding; and multi-task instruction tuning on ontology-language pairs with curriculum learning to enhance semantic reasoning and generation. We also construct comprehensive training and evaluation datasets covering diverse ontology reasoning tasks. On this benchmark, our 4B-parameter LOM achieves 89.47% accuracy and outperforms DeepSeek-V3.2 on complex graph reasoning, indicating effective fusion of ontology structure and language.