Bridging the Gap Between Estimated and True Regret Towards Reliable Regret Estimation in Deep Learning based Mechanism Design

Recent advances, such as RegretNet, ALGnet, RegretFormer and CITransNet, use deep learning to approximate optimal multi item auctions by relaxing incentive compatibility (IC) and measuring its violation via ex post regret. However, the true accuracy of these regret estimates remains unclear. Computing exact regret is computationally intractable, and current models rely on gradient based optimizers whose outcomes depend heavily on hyperparameter choices. Through extensive experiments, we reveal that existing methods systematically underestimate actual regret (In some models, the true regret is several hundred times larger than the reported regret), leading to overstated claims of IC and revenue. To address this issue, we derive a lower bound on regret and introduce an efficient item wise regret approximation. Building on this, we propose a guided refinement procedure that substantially improves regret estimation accuracy while reducing computational cost. Our method provides a more reliable foundation for evaluating incentive compatibility in deep learning based auction mechanisms and highlights the need to reassess prior performance claims in this area.

Liked Liked