Prime clusters and Riecoin

Prime clusters are sets of primes that appear as close together as is generally possible.

There is one pair of consecutive prime numbers, 2 and 3, but there cannot be any more: in any larger pair of consecutive numbers, one of the pair will be even. But there are a lot of twin primes, perhaps infinitely many, and so a prime cluster of size two is a pair of primes whose difference is 2.

How close together can a set of three primes be? The set {2, 3, 5} has diameter 3, i.e. the difference between the largest and smallest element is 3. And the set {3, 5, 7} has diameter 4. But in general the diameter of a set of three primes must be at least 6. If the smallest element is bigger than 3, then all the elements are odd, but they cannot be consecutive odd numbers or else one of them would be divisible by 3. But there are many prime clusters of diameter 6. For example, {13, 17, 19} and {37, 41, 43}.

Formal definition and motivation

There is some fuzziness in the discussion above regarding what is generally possible. This section will make our definitions more rigorous.

In general a pair of primes cannot be consecutive numbers because one of the pair must be even. Stated more abstractly, every pair of integers larger than {2, 3} will contain a complete residue class mod 2, i.e. one of the numbers will be congruent to 0 mod 2 and one of the numbers will be congruent to 1 mod 2.

Now let’s look at sets of three primes. The example {2, 3, 5} is exceptional because it contains a complete residue class mod 2, i.e. it contains even and odd numbers. The example {3, 5, 7} is exceptional because it contains a complete residue class mod 3.

We say that a set of k primes is a cluster if it does not contain a full residue class modulo any prime. We could say it does not contain a full residue class modulo any prime qk because trivially no set of k elements can have set of more than k elements. For example, the cluster {13, 17, 19} does not contain a full set of residues mod 2 or 3, but it also does not have a full set of residues mod 5, 7, 11, ….

We say a cluster is maximally dense if it has the minimum diameter for a cluster of its number of primes.

Informally, we will call a maximally dense cluster simply a cluster. A maximally dense prime cluster is also sometimes called a prime constellation.

Riecoin cryptocurrency

I’ve written several posts about the Primecoin cryptocurrency whose proof of work task is finding prime chains. The Riecoin cryptocurrency requires miners to find prime clusters.

Primecoin is far from a major cryptocurrency, with a market cap of around $2.3M. Riecoin is about four times smaller than Primecoin. There is another number-threoretic cryptocurrency, Gapcoin, whose market cap is about 10x smaller than that of Riecoin. Safe to say these three projects are of more interest to mathematicians than investment firms. All three of these prime-based cryptocurrencies were launched between 2013 and 2014.

A proof of work task should satisfy three criteria:

  1. Solutions should be difficult to find but easy to confirm.
  2. The time to find a solution should be roughly predictable.
  3. The difficulty should be adjustable.

Finding prime clusters requires a brute force search, but it’s easy to test whether a cluster has been found, and so the first property is satisfied.

The Hardy-Littlewood conjectures give an estimate of the difficulty in finding prime clusters of a given length. The difficulty can be adjusted by adjusting the required length. So the Hardy-Littlewood conjectures assist in satisfying the second and third properties. It does not matter if the conjectures are false somewhere out in asymptopia; they empirically give good estimates for the size of numbers used in mining Riecoin.

More about clusters

The definition of a maximally dense cluster depends on a function s(k) that says what the diameter of a cluster of k primes would need to be. We’ve said s(2) = 2 and s(3) = 6. More values of s are listed on the page for OEIS sequence A008407.

Related posts

The post Prime clusters and Riecoin first appeared on John D. Cook.

Liked Liked