Data-Driven Dynamic Factor Modeling via Manifold Learning
arXiv:2506.19945v2 Announce Type: replace
Abstract: We introduce a data-driven dynamic factor framework for modeling the joint evolution of high-dimensional covariates and responses without parametric assumptions. Standard factor models applied to covariates alone often lose explanatory power for responses. Our approach uses anisotropic diffusion maps, a manifold learning technique, to learn low-dimensional embeddings that preserve both the intrinsic geometry of the covariates and the predictive relationship with responses. For time series arising from Langevin diffusions in Euclidean space, we show that the associated graph Laplacian converges to the generator of the underlying diffusion. We further establish a bound on the approximation error between the diffusion map coordinates and linear diffusion processes, and we show that ergodic averages in the embedding space converge under standard spectral assumptions. These results justify using Kalman filtering in diffusion-map coordinates for predicting joint covariate-response evolution. We apply this methodology to equity-portfolio stress testing using macroeconomic and financial variables from Federal Reserve supervisory scenarios, achieving mean absolute error improvements of up to 55% over classical scenario analysis and 39% over principal component analysis benchmarks.