SciNets: Graph-Constrained Multi-Hop Reasoning for Scientific Literature Synthesis
arXiv:2601.09727v1 Announce Type: new
Abstract: Cross-domain scientific synthesis requires connecting mechanistic explanations across fragmented literature, a capability that remains challenging for both retrieval-based systems and unconstrained language models. While recent work has applied large language models to scientific summarization and question answering, these approaches provide limited control over reasoning depth and structural grounding. We frame mechanistic synthesis as a graph-constrained multi-hop reasoning problem over literature-derived concept graphs. Given a scientific query and a compact, query-local corpus, SciNets constructs a directed concept graph and synthesizes mechanistic explanations by identifying multi-hop reasoning paths that connect concepts that rarely co-occur within individual papers. We systematically compare shortest-path reasoning, k-shortest paths with diversity constraints, stochastic random walks, and a retrieval-augmented language model baseline. Rather than evaluating correctness, which is often indeterminate when synthesizing connections across distributed sources, we introduce a behavioral framework that measures symbolic reasoning depth, mechanistic diversity, and grounding stability. Across machine learning, biology, and climate science tasks, explicit graph constraints enable controllable multi-hop reasoning while revealing a consistent trade-off: deeper and more diverse symbolic reasoning increases grounding instability, whereas shortest-path reasoning remains highly stable but structurally conservative. These findings provide a systematic behavioral characterization of the limits and capabilities of current graph-LLM integration for scientific synthesis.