LLM-Driven Preference Data Synthesis for Proactive Prediction of the Next User Utterance in Human-Machine Dialogue
arXiv:2601.09713v1 Announce Type: new
Abstract: Proactively predicting a users next utterance in human-machine dialogue can streamline interaction and improve user experience. Existing commercial API-based solutions are subject to privacy concerns while deploying general-purpose LLMs locally remains computationally expensive. As such, training a compact, task-specific LLM provides a practical alternative. Although user simulator methods can predict a user’s next utterance, they mainly imitate their speaking style rather than advancing the dialogue. Preference data synthesis has been investigated to generate data for proactive next utterance prediction and help align LLMs with user preferences. Yet existing methods lack the ability to explicitly model the intent reasoning that leads to the user’s next utterance and to define and synthesize preference and non-preference reasoning processes for predicting the user’s next utterance.To address these challenges, we propose ProUtt, an LLM-driven preference data synthesis method for proactive next utterance prediction. ProUtt converts dialogue history into an intent tree and explicitly models intent reasoning trajectories by predicting the next plausible path from both exploitation and exploration perspectives. It then constructs preference and non-preference reasoning processes by perturbing or revising intent tree paths at different future turns. Extensive evaluations using LLM-as-a-judge and human judgments demonstrate that ProUtt consistently outperforms existing data synthesis methods, user simulators, and commercial LLM APIs across four benchmark datasets. We release both the code and the synthesized datasets to facilitate future research.