Spatial Covariance Constraints for Gaussian Mixture Models
arXiv:2601.07979v1 Announce Type: cross
Abstract: Although extensive research exists in spatial modeling, few studies have addressed finite mixture model-based clustering methods for spatial data. Finite mixture models, especially Gaussian mixture models, particularly suffer from high dimensionality due to the number of free covariance parameters. This study introduces a spatial covariance constraint for Gaussian mixture models that requires only four free parameters for each component, independent of dimensionality. Using a coordinate system, the spatially constrained Gaussian mixture model enables clustering of multi-way spatial data and inference of spatial patterns. The parameter estimation is conducted by combining the expectation-maximization (EM) algorithm with the generalized least squares (GLS) estimator. Simulation studies and applications to Raman spectroscopy data are provided to demonstrate the proposed model.