PRISMA: Reinforcement Learning Guided Two-Stage Policy Optimization in Multi-Agent Architecture for Open-Domain Multi-Hop Question Answering

arXiv:2601.05465v1 Announce Type: new
Abstract: Answering real-world open-domain multi-hop questions over massive corpora is a critical challenge in Retrieval-Augmented Generation (RAG) systems. Recent research employs reinforcement learning (RL) to end-to-end optimize the retrieval-augmented reasoning process, directly enhancing its capacity to resolve complex queries. However, reliable deployment is hindered by two obstacles. 1) Retrieval Collapse: iterative retrieval over large corpora fails to locate intermediate evidence containing bridge answers without reasoning-guided planning, causing downstream reasoning to collapse. 2) Learning Instability: end-to-end trajectory training suffers from weak credit assignment across reasoning chains and poor error localization across modules, causing overfitting to benchmark-specific heuristics that limit transferability and stability. To address these problems, we propose PRISMA, a decoupled RL-guided framework featuring a Plan-Retrieve-Inspect-Solve-Memoize architecture. PRISMA’s strength lies in reasoning-guided collaboration: the Inspector provides reasoning-based feedback to refine the Planner’s decomposition and fine-grained retrieval, while enforcing evidence-grounded reasoning in the Solver. We optimize individual agent capabilities via Two-Stage Group Relative Policy Optimization (GRPO). Stage I calibrates the Planner and Solver as specialized experts in planning and reasoning, while Stage II utilizes Observation-Aware Residual Policy Optimization (OARPO) to enhance the Inspector’s ability to verify context and trigger targeted recovery. Experiments show that PRISMA achieves state-of-the-art performance on ten benchmarks and can be deployed efficiently in real-world scenarios.

Liked Liked