DafnyPro: LLM-Assisted Automated Verification for Dafny Programs

arXiv:2601.05385v1 Announce Type: new
Abstract: We present DafnyPro, an inference-time framework that enhances LLMs for generating verification annotations in Dafny. DafnyPro comprises three key components: a diff-checker that prevents modifications to base program logic, a pruner that removes unnecessary invariants, and a hint-augmentation system that retrieves and applies predefined, problem-independent proof strategies. We evaluate DafnyPro using Claude Sonnet 3.5 and 3.7 on four benchmarks: Clover, MBPP-Dafny, HumanEval-Dafny, and DafnyBench, achieving consistent performance gains in all cases. Notably, on DafnyBench, the most challenging benchmark, Claude Sonnet 3.5 enhanced with DafnyPro achieves 86% correct proofs, a 16 pp improvement over the base model. We also fine-tune two Qwen models on training data derived from verification attempts by larger models enhanced with DafnyPro. Our 7B and 14B models achieve 68% and 70% correct proofs on DafnyBench, respectively, demonstrating that smaller models can maintain high verification accuracy.

Liked Liked