Lost in Execution: On the Multilingual Robustness of Tool Calling in Large Language Models
arXiv:2601.05366v1 Announce Type: new
Abstract: Large Language Models (LLMs) are increasingly deployed as agents that invoke external tools through structured function calls. While recent work reports strong tool-calling performance under standard English-centric evaluations, the robustness of tool calling under multilingual user interactions remains underexplored. In this work, we introduce MLCL, a diagnostic benchmark, and conduct a systematic evaluation of multilingual tool calling across Chinese, Hindi, and the low-resource language Igbo. Through fine-grained error analysis, we show that many failures occur despite correct intent understanding and tool selection. We identify parameter value language mismatch as a dominant failure mode, where models generate semantically appropriate parameter values in the user’s language, violating language-invariant execution conventions. We further evaluate several inference-time system strategies and find that while these strategies substantially reduce language-induced execution errors, none of them can fully recover English-level performance.