Uncovering Bias Paths with LLM-guided Causal Discovery: An Active Learning and Dynamic Scoring Approach
arXiv:2506.12227v2 Announce Type: replace-cross
Abstract: Ensuring fairness in machine learning requires understanding how sensitive attributes like race or gender causally influence outcomes. Existing causal discovery (CD) methods often struggle to recover fairness-relevant pathways in the presence of noise, confounding, or data corruption. Large language models (LLMs) offer a complementary signal by leveraging semantic priors from variable metadata. We propose a hybrid LLM-guided CD framework that extends a breadth-first search strategy with active learning and dynamic scoring. Variable pairs are prioritized for querying using a composite score combining mutual information, partial correlation, and LLM confidence, enabling more efficient and robust structure discovery. To evaluate fairness sensitivity, we introduce a semi-synthetic benchmark based on the UCI Adult dataset, embedding domain-informed bias pathways alongside noise and latent confounders. We assess how well CD methods recover both global graph structure and fairness-critical paths (e.g., sex–>education–>income). Our results demonstrate that LLM-guided methods, including our active, dynamically scored variant, outperform baselines in recovering fairness-relevant structure under noisy conditions. We analyze when LLM-driven insights complement statistical dependencies and discuss implications for fairness auditing in high-stakes domains.