Hierarchical topological clustering

arXiv:2601.00892v1 Announce Type: cross
Abstract: Topological methods have the potential of exploring data clouds without making assumptions on their the structure. Here we propose a hierarchical topological clustering algorithm that can be implemented with any distance choice. The persistence of outliers and clusters of arbitrary shape is inferred from the resulting hierarchy. We demonstrate the potential of the algorithm on selected datasets in which outliers play relevant roles, consisting of images, medical and economic data. These methods can provide meaningful clusters in situations in which other techniques fail to do so.

Liked Liked