From Unstructured Data to Demand Counterfactuals: Theory and Practice
arXiv:2601.05374v1 Announce Type: cross Abstract: Empirical models of demand for differentiated products rely on low-dimensional product representations to capture substitution patterns. These representations are increasingly proxied by applying ML methods to high-dimensional, unstructured data, including product descriptions and images. When proxies fail to capture the true dimensions of differentiation that drive substitution, standard workflows will deliver biased counterfactuals and invalid inference. We develop a practical toolkit that corrects this bias and ensures valid inference for a broad class […]