Automated structural testing of LLM-based agents: methods, framework, and case studies
arXiv:2601.18827v1 Announce Type: new Abstract: LLM-based agents are rapidly being adopted across diverse domains. Since they interact with users without supervision, they must be tested extensively. Current testing approaches focus on acceptance-level evaluation from the user’s perspective. While intuitive, these tests require manual evaluation, are difficult to automate, do not facilitate root cause analysis, and incur expensive test environments. In this paper, we present methods to enable structural testing of LLM-based agents. Our approach utilizes traces (based on […]