Monkey Jump : MoE-Style PEFT for Efficient Multi-Task Learning
Mixture-of-experts variants of parameter-efficient fine-tuning enable per-token specialization, but they introduce additional trainable routers and expert parameters, increasing memory usage and training cost. This undermines the core goal of parameter-efficient fine-tuning. We propose Monkey Jump, a method that brings mixture-of-experts-style specialization to parameter-efficient fine-tuning without introducing extra trainable parameters for experts or routers. Instead of adding new adapters as experts, Monkey Jump treats the adapters already present in each Transformer block (such as query, key, value, up, and […]