Dynamic Prior Thompson Sampling for Cold-Start Exploration in Recommender Systems
arXiv:2602.00943v1 Announce Type: new Abstract: Cold-start exploration is a core challenge in large-scale recommender systems: new or data-sparse items must receive traffic to estimate value, but over-exploration harms users and wastes impressions. In practice, Thompson Sampling (TS) is often initialized with a uniform Beta(1,1) prior, implicitly assuming a 50% success rate for unseen items. When true base rates are far lower, this optimistic prior systematically over-allocates to weak items. The impact is amplified by batched policy updates and […]