Structure-preserving learning and prediction in optimal control of collective motion
Wide-spread adoption of unmanned vehicle technologies requires the ability to predict the motion of the combined vehicle operation from observations. While the general prediction of such motion for an arbitrary control mechanism is difficult, for a particular choice of control, the dynamics reduces to the Lie-Poisson equations [33,34]. Our goal is to learn the phase-space dynamics and predict the motion solely from observations, without any knowledge of the control Hamiltonian or the nature of interaction between vehicles. To […]