Scalable Heterogeneous Graph Learning via Heterogeneous-aware Orthogonal Prototype Experts
Heterogeneous Graph Neural Networks(HGNNs) have advanced mainly through better encoders, yet their decoding/projection stage still relies on a single shared linear head, assuming it can map rich node embeddings to labels. We call this the Linear Projection Bottleneck: in heterogeneous graphs, contextual diversity and long-tail shifts make a global head miss fine semantics, overfit hub nodes, and underserve tail nodes. While Mixture-of-Experts(MoE) could help, naively applying it clashes with structural imbalance and risks expert collapse. We propose a […]