SICL-AT: Another way to adapt Auditory LLM to low-resource task
arXiv:2601.18904v1 Announce Type: new Abstract: Auditory Large Language Models (LLMs) have demonstrated strong performance across a wide range of speech and audio understanding tasks. Nevertheless, they often struggle when applied to low-resource or unfamiliar tasks. In case of labeled in-domain data is scarce or mismatched to the true test distribution, direct fine-tuning can be brittle. In-Context Learning (ICL) provides a training-free, inference-time solution by adapting auditory LLMs through conditioning on a few in-domain demonstrations. In this work, we […]