Autodiscover: A reinforcement learning recommendation system for the cold-start imbalance challenge in active learning, powered by graph-aware thompson sampling
Systematic literature reviews (SLRs) are fundamental to evidence-based research, but manual screening is an increasing bottleneck as scientific output grows. Screening features low prevalence of relevant studies and scarce, costly expert decisions. Traditional active learning (AL) systems help, yet typically rely on fixed query strategies for selecting the next unlabeled documents. These static strategies do not adapt over time and ignore the relational structure of scientific literature networks. This thesis introduces AutoDiscover, a framework that reframes AL as […]